
CUG 2003 Proceedings 1

An Optimization Experiment with the Community Land Model on
the Cray X1

James B. White III, Center for Computational Sciences, Oak
Ridge National Laboratory

ABSTRACT: Version 2.1 of the Community Land Model (CLM) uses data and control
structures that challenge the capabilities of the Cray Fortran compiler. We describe an
optimization experiment where we modified the CLM data structure within a computationally
expensive tree of subroutines and compared performance with the original code. The
modifications produce a 20% increase in performance on an IBM p690 and 5.86 to 7.29 times
this performance on a Cray X1. The modified code may also be as maintainable and
extensible as the original code.

1. Introduction
The Community Land Model (CLM) is the land model

for the Coupled Climate System Model (CCSM) and the
Community Atmospheric Model (CAM) [Vertenstein].
CLM may also be run in stand-alone mode using
atmospheric data sets. As part of a larger effort between
NCAR, Cray, and Oak Ridge National Laboratory (ORNL)
to optimize CCSM on the Cray X1, we are investigating the
performance potential of CLM on the X1 at the Center for
Computational Sciences (CCS) at ORNL.

CLM uses a horizontal grid matching that of the
atmosphere in CAM, along with a subgrid for modeling
multiple plant and surface conditions within a single
atmospheric grid cell. Version 2.1 of CLM includes revised
data structures designed to allow flexibility in the subgrid
representation. These data structures and the resulting loop
structure present significant barriers to vectorization.

To investigate strategies for improving the performance
of CLM, we performed an experiment where we modified
the data structures within a computationally intensive tree of
subroutines and compared the performance with the original
subroutines.

In Section 2, we describe the data structures and control
flow of CLM 2.1, and we describe our experimental
structures and implementation in the Sections 3 and 4. In
Section 5, we describe results from single-process runs on
the Cray X1 and IBM p690 in the CCS, and, in Section 6,
we summarize the results and their potential impact on
development plans for CLM.

2. CLM 2.1
The data structures in CLM 2.1 have grid cells at the

highest level, where each grid cell represents a certain
physical area of land on Earth [Vertenstein]. Below grid
cells are land units, columns, and plant functional types
(PFTs). Each level can have multiple instances of each

sublevel, where sublevel areas represent percentages of the
parent area, not physically contiguous regions. Land units
describe different soil properties and land-cover types, such
as lakes and glaciers. Columns describe different soil states.
Also, energy and particle fluxes with the atmosphere are
computed at the column level. PFTs each represent broad
categories of plants that may compete for the column
resources.

CLM is written in Fortran with MPI and OpenMP
parallelism, and each subgrid level is implemented as a
user-defined type. Grid cells are independent and are
distributed among processors. Within each type are many
additional types for collections of related variables, such as
physiological parameters, state variables, and flux variables
for energy, momentum, and various chemicals. The type for
a given level has an array pointer for the next sublevel and a
pointer to its parent level. For example, each column has a
pointer array of PFTs and a single pointer up to its parent
land unit. These types are all defined in a single module,
“clmtype.F90”.

A second module, “clmpoint.F90”, defines pointer
arrays to one-dimensional aggregates of each sublevel. For
example, “ppoint” contains a pointer to an array of all the
PFTs on that processor. Each column type points to a PFT
subarray within “ppoint”, and each PFT type contains an
integer that gives the index of that PFT within “ppoint”.

Most of the runtime of CLM is within the time-stepping
loop in the subroutine “driver”. At each time step, an inner
loop iterates over each column in the aggregate array of all
columns on that processor. Each column is passed to a series
of subroutines that then operate on that column and its
PFTs. The subroutines read variables defined at the land-
unit and grid-cell levels, and they access those variables by
following a pointer in the column type. The driver calls
different subroutines depending on whether the column is
part of a “lake” land unit or not.

Each subroutine called by “driver” declares local
pointers for the variables used within the type hierarchy.

CUG 2003 Proceedings 2

The subroutine then proceeds with a long list of pointer
associations, pointing down the type hierarchy directly to
each variable. The remainder of the subroutine then uses the
local pointers as shorter aliases for the “clmtype” variables.

3. Experiments
The results we describe are based on our experiences on

Cheetah and Phoenix in the CCS. Cheetah is a cluster of 27
IBM p690 nodes, where each node has 32 Power4
processors running at 1.3 GHz. The Cheetah operating
system is AIX 5.1, and the Fortran compiler is XL Fortran
7.1.1. Phoenix is a 32-MSP Cray X1 running at 800 MHz.
The Phoenix operating system is UNICOS/mp 2.1, and the
Fortran compiler is Cray Fortran 4.3.

The high-level outer loop and the complicated data
structures in CLM 2.1 present a major challenge for the X1
compiler. The compiler is able to vectorize and multistream
the original code only a trivial amount. ORNL is conducting
two independent experiments to investigate strategies for
optimizing CLM for the X1. In one we modify the data
structures, and in the other we attempt to leave the data
structures unmodified. We describe only the former
experiment here.

The goal of the experiment is to test the following
hypothesis: structures implemented strictly with modules
and arrays of built-in types can provide similar flexibility to
the original structures—but can provide much higher
performance on vector systems and similar or better
performance on superscalar systems. The experiment is to
implement a tree of subroutines called from the “driver”
loop and compare performance with the original tree. Data
are copied from the original to the modified structures
immediately before each call, and they are compared
afterwards to ensure that differences are within appropriate
numerical round-off errors. We chose the tree under the
subroutine “Biogeophysics1”, which is the most
computationally expensive tree according to a profile
generated on the IBM p690.

4. Modifications
Our modified data structures have no user-defined

types. The abstract types representing grid cells, land units,
columns, and PFTs are implemented as Fortran modules.
Within each module, each scalar variable is promoted to a
one-dimensional array, and each array gets an additional
leading dimension. The original sub-types within each type
are thus “flattened” into separate variables. To correct
redundant variables names created by this flattening, and to
avoid indexing errors, each variable has an additional single
character prefix: “g” for grid-cell variables, “l” for land-
unit, “c” for column, and “p” for PFT. Relationships
between types are implemented as index arrays. For
example, the integer array “pcolumn” gives the index of the
column associated with each PFT.

The layout of the array variables follows conventions
dictated by their use. Significant portions of the
computations within “driver” are specific to land units that

do not represent lakes, so the column and PFT variables are
sorted such that the non-lake points are all first. This
arrangement allows efficient specification of lake versus
non-lake points through array bounds.

The PFT variables are further sorted to allow efficient
reductions to column variables. CLM 2.1 uses a single PFT
for each column by default, but the data structure and
implementation are designed to allow multiple PFTs per
column, as required by the planned addition of competition
for resources among plant types [Hoffman]. Variables at the
PFT level may be summed or averaged at the column level.
To enable vectorization of such operations, the PFTs are
sorted into blocks of independent columns. Thus, the first
PFTs associated with each column is grouped, then the
second, and so on. An index-bounds array, such as that used
for compressed storage of sparse matrices, designates the
extent of each independent-column block. Because each
block of PFTs is associated with an independent set of
columns, column updates may be vectorized and
multistreamed over each block.

Using these new data structures, we modified
“Biogeophysics1” and all subroutines it calls that are not
inlined automatically by the compiler using default
optimization and the “-Omodinline” option. The other
sub rou t ines r equ i r ing mod i f i ca t i on were
“ B a r e G r o u n d F l u x e s ”, “CanopyFluxes”,
“FrictionVelocity”, and “SurfaceRadiation”. We also
modified the function “StabilityFunc”, used by
“FrictionVelocity”, but these modifications were scalar
strength-reduction and input-specialization optimizations,
not data-structure modifications.

Calls to “Biogeophysics1” in the original code occur
within an “if” test for non-lake columns, all within a loop
over columns. Each “Biogeophysics1” call passes a single
column as an argument. We originally replaced the column
loop with a single “Biogeophysics1” call that passes
bounds to the column arrays and PFT arrays, bounds that
restrict operation to the non-lake columns. By passing
bounds, however, we were also able to introduce a simple
but effective tuning parameter. We added a new outer loop
with a large stride and used the loop index and stride to
define array blocks. The stride, and thus the size of the
resulting blocks, is tunable for different systems. Small
blocks can be used for cache-dependent superscalar
systems, full-sized blocks for vector-only systems, or large
blocks for vector systems with additional dimensions of
parallelization, such as threads or streams.

Instead of passing complicated user-defined types as
arguments, we “pass” the data through modules via “use”
statements. The outer loop over columns moves into the
subroutines, and loops over PFTs for each column become
larger loops over all the PFTs within the bounds now
provided as arguments. The modified “Biogeophysics1”
thus starts with a column loop. This loop reads variables
defined at the land-unit and grid-cell level, so each column
iteration must determine the appropriate index at the higher
levels from a corresponding index array. The index for each

CUG 2003 Proceedings 3

level has the corresponding prefix, as shown in the
following code fragment.

 do ci = clb, cub
 li = clandunit(ci)
 gi = cgridcell(ci)
 …

The appropriate index is then used for each variable. The
following example uses grid-cell (“g”) variables to compute
a column (“c”) variable.

cthm(ci) = gforc_t(gi) + 0.0098*gforc_hgt_t(gi)

The use of arrays instead of user-defined types
introduces a source of errors because the wrong index can
be used with a given variable. For example, the land-unit
index “li” could be used with a column variable. Because
there are more columns than land units, the index would
never be out of range, so the resulting error could be
difficult to detect. An important motivation for adding a
prefix to each variable was to reduce the likelihood of such
errors; the prefix of the index and of the variable must
match. Note that this is strictly a convention and is not
enforced by the compiler.

After the initial column loop, “Biogeophysics1” calls
“SurfaceRadiation” and performs a PFT loop. Within the
PFT loop, it calls either “BareGroundFluxes” or
“CanopyFluxes” depending on the nature of the PFT. We
modified “SurfaceRadiation” to take PFT bounds as
arguments, and we expanded the PFT loop over the same
bounds. We pulled the calls to “BareGroundFluxes” and
“CanopyFluxes” out of the loop and passed PFT bounds as
arguments. The “if” test to determine which flux subroutine
to call was then moved inside each subroutine.

The original “SurfaceRadiation” subroutine is
dominated by a PFT loop, so it required little structural
change. It has an imperfectly-nested inner loop over
radiation wavebands, of which there are only two. The
compiler required the following directive on this inner loop
to vectorize the outer loop.

!dir$ unroll(nband)

The “unroll” directive alone, without specification of
“nband”, was not sufficient to induce vectorization.

The subroutine “BareGroundFluxes”, with the “if”
test for bare ground moved inside it, introduced a new
implementation issue: how to implement conditions around
large blocks of code. Using a standard “if” statement would
result in a large number of masked vector operations, and
thus many redundant computations. Instead we chose to
implement an index filter. The following code illustrates the
filter idiom for PFTs, where “<test>” represents the
condition.

 fn = 0
 do pi = plb, pub
 if (<test>) then
 fn = fn+1
 filterp(fn) = pi
 end if
 end do

The Cray compiler recognizes this idiom and produces
vectorized code, though it does not yet produce
multistreamed code.

The PFT loops then iterate over the “fn” values of
“filterp”, and the PFT index comes from “filterp”
instead of directly from the loop bounds. Note the use of “f”
as the prefix for filter-related variables. The filter idiom fits
naturally into the loop structure where index values come
from index arrays. The following code fragment illustrates
such loop structure, where the loop body uses PFT, column,
and grid-cell variables.

 do fi = 1, fn
 pi = filterp(fi)
 ci = pcolumn(pi)
 gi = pgridcell(pi)
 …

A difference between the filter array and the other index
arrays in this example is that the filter provides index values
to be used on the left-hand side of assignment operations.
The other indices are used only for reading, so their values
may repeat. The following Cray directive instructs the
compiler that the variable “filterp” is a permutation; none
of its values repeat.

!dir$ permutation(filterp)

This directive is placed only at the point where “filterp”
is declared. With this directive, the Cray compiler vectorizes
loops using indices derived from “filterp”. We found that
the compiler does not always multistream such loops,
however, but does multistream the loops with the addition
of a “concurrent” directive.

“BareGroundFluxes” calls the subroutines
“MoninObukIni” and “FrictionVelocity”, each of which
takes a list of scalar arguments. The Cray compiler inlines
“MoninObukIni” but not “FrictionVelocity”, possibly
because “FrictionVelocity” contains a string of “if-
else-else” statements. Also, “FrictionVelocity” is
called inside an iteration loop, though this loop has a static
bound of three. We chose to pull the filtered PFT loop
inside of the “FrictionVelocity” call, and this decision
had a number of implications. The resulting splits of the
PFT loop within “BareGoundFluxes” required many scalar
temporaries to be promoted to arrays. We used automatic
arrays defined by the bounds provided as arguments, a
strategy that can cause problems for systems with small
limits on the program stack. We experienced no such
problems on the X1 and p690, however.

Of all the subroutines we modified, we changed the
structure of “FrictionVelocity” the most. The original

CUG 2003 Proceedings 4

subroutine takes scalar arguments and computes new values
for three of those arguments. Each computation uses a four-
level test of the following form, where “zetac” is a constant
and “v” is the value to be computed. Computations of “v”
can be computationally expensive, with fractional powers
and logarithms.

 if (zeta < -zetac) then
 v = …
 else if (zeta < 0.) then
 v = …
 else if (zeta <= 1.) then
 v = …
 else
 v = …
 endif

The modified “FrictionVelocity” takes array
arguments, along with array bounds and a filter array. The
filter argument provides the filter used by the caller. For
each output array, the above “if” structure is replaced by
the construction of four local filters. In the following
example, “filterp” is the filter passed in, and “flnz”,
“fl0”, “fle1”, and “felse” are local filters.

 flnzn = 0
 fl0n = 0
 fle1n = 0
 felsen = 0
 do fi = 1, fn
 pi = filterp(fi)
 if (pzeta(pi) < -zetac) then
 flnzn = flnzn + 1
 flnz(flnzn) = pi
 else if (pzeta(pi) < 0.) then
 fl0n = fl0n + 1
 fl0(fl0n) = pi
 else if (pzeta(pi) <= 1.) then
 fle1n = fle1n + 1
 fle1(fle1n) = pi
 else
 felsen = felsen + 1
 felse(felsen) = pi
 end if
 end do

Like for a single filter, this multi-filter construction is
vectorized but not multistreamed by the Cray compiler.
Separate computation loops then iterate over the elements of
each filter, allowing for full vectorization and
multistreaming of the expensive power and logarithmic
computations.

In the original CLM code, all subroutines exist within
modules, even if the subroutine is the only member of the
module. We extracted each modified subroutine from its
module, thus using modules exclusively for data “objects”.
“StabilityFunc” was unique in that it became a
“contained” function of “FrictionVelocity”.

The arguments passed to the modified
“FrictionVelocity” include arrays local to the caller,
which have the same bounds as are passed to

“FrictionVelocity”, and arrays defined in the PFT
module, which have bounds beyond those passed to
“FrictionVelocity”. With “FrictionVelocity”
extracted from its module, we use the rules for argument
passing that apply when no interface block is available. We
pass caller-local arrays directly but pass PFT-module arrays
using the element at the lower bound, as in the following
example. The array bounds are “plb” and “pub”, arrays on
the third and fourth lines are from the PFT module, and
arrays on the last line are local to the caller.

call frictionvelocityv(
plb, pub, fn, filterp, &
pdispla(plb), pz0mv(plb), &
pz0hv(plb), pz0qv(plb), &
pobu, pum, pustar, ptemp1, ptemp2)

If “FrictionVelocity” were a module subroutine, we
would pass subsections of the module arrays. Historically,
Fortran compilers have done limited analysis of subsection
arguments, often choosing the conservative approach of
making copies. These unnecessary copies can have dramatic
negative performance effects. We avoided the issue here,
although the current Cray and IBM compilers may well
have eliminated the unnecessary copies.

The “FrictionVelocity” subroutine is called by both
“BareGroundFluxes” and “CanopyFluxes”. The various
arguments cannot be “passed” by module because the two
callers pass different arguments. Also, where
“BareGroundFluxes” calls “FrictionVelocity” from an
iteration loop with static bounds, “CanopyFluxes” calls it
from an iteration loop with runtime bounds that are specific
to each PFT.

This loop poses a new challenge for vectorization, but
our solution uses a familiar concept, the filter array. We
replaced the original test in the “do while” with a length
test of the filter array; the iteration ends when the filter has
no more elements. After a copy of the initial filter is made,
the filter array is “weeded” at each iteration using the
original test of the iteration loop. The initial filter array is
then restored after the loop.

This and most other modifications were intended
primarily to enable vectorization and multistreaming on the
X1. We expected many of these modifications to also
benefit performance on superscalar machines, such as the
IBM p690, while other modifications might hamper
performance.

The original CLM code is near-optimal in temporal
locality of data, as all computations for each column are
performed before using the next column. The original code
may be weak in spatial locality, however, because variables
are scattered throughout the hierarchy of user-defined types.
We saw only limited correlation between the usage pattern
of variables and their spatial proximity within the user-
defined types.

The modified data and code structures provide more
spatial locality, with smaller loop bodies using values
arranged contiguously in memory. Such smaller loop bodies
and array variables—instead of large outer loops with

CUG 2003 Proceedings 5

nested-pointer variables—are also much friendlier to data-
dependence analysis, so superscalar compilers have greater
opportunities for pipelining and instruction-scheduling
optimizations. The smaller loop bodies limit temporal
locality, however, particularly with large loop bounds,
where the cache may be refilled before data can be re-used.
Still, the bounds are tuning parameters, so they can be
reduced to improve temporal locality.

The various index filters, however, have no apparent
benefit for superscalar systems, though they are essential for
vectorization. They reduce spatial locality by fragmenting
memory use, and they add the overhead of filter
construction and index manipulation.

We conducted this experiment to determine the actual
performance resulting from these various positive and
negative factors.

5. Results
We ran CLM with the original and modified

implementation of the “Biogeophysics1” tree for 48 time
steps using the standard input files provided with CLM
[CLM]. Runtimes for each implementation of
“Biogeophysics1” came from the timer facility built into
CLM. We ran on a single processor of the IBM p690 and a
single MSP of the Cray X1. The results shown here
represent tuned values for the block size on each system. On
the p690, the best block size was 16 words, which happens
to coincide with the 128-byte cache-line size. On the X1, the
best block size was one fourth of the total array size.
Splitting the bounds into four blocks allowed
multistreaming at the highest level, over calls to
“Biogeophysics1”. The call tree then needed no internal
multistreaming.

The runtime results appear in the following figure. On
the p690, the modifications give a net improvement of 20%.
On the X1, the improvement is dramatic, some 98%. The
modified code on the X1 runs 5.86 times faster than the
modified code on the p690 and 7.29 times faster than the
original code on the p690. Therefore, the modifications did
indeed provide significant speed on the X1 without reducing
performance on the p690.

Biogeophysics1 runtime (48 timesteps)

0

20

40

60

80

100

120

Original Modified

Se
co

nd
s

IBM p690
Cray X1

The question of maintainability and extensibility of the
resulting code is more difficult to judge, however. The
modified code does allow some errors not likely to occur in
the original. We have found that the matching-prefixes
convention is effective at avoiding the use of the wrong
index, but nothing at the compiler level enforces this
convention. Also, one may forget to assign the index for a
higher level before using it. In a PFT loop, for example, one
may use the column index, “ci”, without first setting its
value from “pcolumn(pi)”.

The original code has its own sources of error,
however. Variables at different levels of the data
structures—at the PFT level and column level, for
example—may have the same name. These names are
distinct in the context of their data types. In some CLM
subroutines, however, the same local pointer is used for the
variable at one level in one section of code and at another
level in another section. Errors in the association of such a
pointer could produce subtle failures that are difficult to
detect and correct.

The use of local pointers has additional adverse effects,
particularly for readability. Each subroutine starts with a
long list of pointer declarations and associations that
obscure the actual computation. The associations typically
use the results of previous associations, making it difficult
to determine the actual variable referenced by any given
local pointer. The prefix convention we applied to the
modified code eliminates much of this difficulty; it is clear
from the name of a variable what level it comes from. We
considered adding to the convention a mechanism for
distinguishing local variables, but we implemented no such
mechanism.

 To help investigate relative maintainability, it may be
useful to compare the size of the original code versus the
modified code. The table at the end shows the lines of code
and number of characters in each subroutine, with
comments and blanks removed. Excluding
“FrictionVelocity”, the modified subroutines have 29-
56% fewer lines and 13-53% fewer characters. Even
including “FrictionVelocity”, the modified subroutines
have a total of 23% fewer lines and 18% fewer characters
than the originals.

Consider a modification to a subroutine that requires
the use of an additional PFT variable, one that resides in the
original hierarchical data structure, and thus in the PFT
module of the modified code. In the modified subroutines,
you simply use the variable directly. In the original
subroutines, you must declare a local pointer and associate
it. You must therefore modify three times as many lines of
code in the original CLM than in the modified code.
Because of examples like this, along with potential
improvements in readability and reduced maintenance load,
we believe that the modified data structures and coding
conventions could prove at least as easy to maintain and
extend as the original ones.

CUG 2003 Proceedings 6

6. Conclusions
We have described data structures and coding

conventions used to modify the tree of calls under
“Biogeophysics1” within the main time-stepping loop of
CLM. Our modifications improve performance on the IBM
p690 and provide much higher absolute performance on the
Cray X1. The resulting code appears to be similar to the
original code in terms of maintainability and extensibility,
perhaps even better. These results may prove adequate to
justify a full conversion of CLM, and we are working with
CLM developers to investigate this possibility.

Forrest Hoffman of ORNL is testing the strategy of
modifying the CLM code to enable vectorization and
multistreaming without modifying the original data
structure. His experiments necessarily push the limits of the
compiler more than those described here, so progress has
been slower. The pace and success of his complementary
experiments will factor heavily into decisions regarding the
conversion of CLM.

Acknowledgements
The author thanks Forrest Hoffman, John Drake, and

Pat Worley of ORNL, Mariana Vertenstein of NCAR, and
Nathan Wichman of Cray for helpful discussions regarding
the structure of CLM, future development plans, and
optimization strategies.

This research was sponsored by the Mathematical,
Information, and Computational Sciences Division, Office
of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

About the Author
James B. White III, a.k.a. Trey White, is in the

Scientific Application Support Group within the CCS. Trey
is the primary CCS liaison for climate researchers funded by
the DOE. CUG 2004 will be hosted by the CCS, and Trey is
the Local Arrangements Chair. He can be reached at
“whitejbiii@ornl.gov”.

References
[CLM] Available from

“http://www.cgd.ucar.edu/tss/clm/distribution/c
lm2.1/index.html”.

[Hoffman] Forrest Hoffman, personal communication.

[Vertenstein] Mariana Vertenstein, Keith Oleson, Sam
Levis, and Peter Thornton. CLM2.1 User's Guide.
National Center for Atmospheric Research, January 2003.
Available from “http://www.cgd.ucar.edu/tss/clm/”.

Lines Characters
Original Modified Ratio Original Modified Ratio

Biogeophysics1 225 98 0.44 4783 2234 0.47
SurfaceRadiation 119 61 0.51 2527 1344 0.53
BareGroundFluxes 205 138 0.67 4512 3122 0.69
CanopyFluxes 505 360 0.71 11179 9689 0.87
FrictionVelocity 120 248 2.07 2862 4943 1.73
Total 1174 905 0.77 25863 21332 0.82

